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Abstract - In this paper a ncw algorithm, designated as Fast Invariant Imbcdding  algo-
ri thm, for solution of Poisson ccption on vector and massively parallel MIMD tirchi tcc-
turcs is prcscntcd.  This algorithm achicvcs the same cq>t  imal computational cff]cicn  cy as
ot llcr Fast I’c)isson  Solvers while oflcring a much bet t m st ruct urc fcm vector and parallel
illll>lcll-lclltatioll. Our i~l~l>lcll~c;l~tatioll  cm the lntcl Delta and Paragcm  shows that a spccclllp
of over two orders  c)f magnitude can be acllicvcd even for mcxlcratc size problems, Fcw a
b] 2 x 5] 1 x 511 3D problcm,  a spccclup  of 340 has been achicvcd by using 512 proccsscm.

l{cy Words: Poisson Equation, Fast  Poisson SOlvcrs,  Fast .lnvuriani  Imhdding  A lgorithrn,
l’arallcl  Algorithms, MIMD Parallel Architectures.

1. Introduction

The solution of Poisson equation is at the heart of many scientific applications. Most
lmlc.tical  applications rccluirc repeated solution of tllc same ccluation  with different bcmncl-
ary conclitiom  and/or  different forcing terms, resulting in a subst anti al computation time
[1,2]. 13xamplcs  arc the time-clcpcndcnt problems in which one or more solutions may bc
rc:cluirecl  at each time step [1], The Direct Poisscm  Solvers, also called Fast Poisscm  SOlvcrs
(FI’SS)  [3]-[6], arc known to be optimal for i~]~l>lc~,~c~~tatio~~  cm conventional scclucntial ar-
chitccturcs.  With the availability of massively parallel architectures, there is an ongoing
research effort on parallel il~~l}lcll~cl~tatio~~  of FPSS [2,7,8].

However, as in other application domains, in order to fully exploit the computing
pc)wcr of tllcsc ncw architccturcs,  the existing algorithms need to bc rccxamincd  with
mnphasis on their cfflcicncy  for parallel implementation. Eventually, ncw algorithms may
have to bc clcvclopcd  that, from the onset, take a greater advant agc of the available massive
parallelism. III fact, it has bccomc  clear that in parallel i]]l])lc]~~c]]tatio]l  of a given algorithm
on a. given architecture the col~lllltl]]ica.tioll  ccmt  may bc even greater than the computation
cost. Hill is [9] argues that a major drawback c)f the current theory of parallel comput  at ion
complexity is the lack of a formalism to include the communication cost while evaluating
the performance of parallel algorithms,

Swarztraubcr and Sweet [1] have prcscntcd  an cxtcnsivc  ccmlparativc  study of cfficicl~cy
of various FPSS for implementation on vector and parallel architect urcs. A unique feature
of [1] is that, to some degree, it also inclucles  an analysis of the communication complcxitoy
c)f various FPSS. As concluded in [1], the Matrix Decomposition (MD) algorithm [3,5,10] 1s
the most cfflcicnt for coarse grain parallel implementation by using a number of processors
on the cmdcr  of problcm size, that is, on the order of ]mnclrccls for most practical problems.
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However, practical illl~>lclllcl~tatioll  of the MD algorithm on MIMD Hypcrcubc  parallel
architect urcs for 2D [2] and 3D [7] problems has shown that the resulting’ comnmni cation
cost can significantly reduce the achievable spccdup. A detailed analysis of the conmmni-
cation complexity of the MD algorithm on various architectures is presented in [11] (SCC

)
also ~4.2 for a brief discussion . Obviously, the performance of the MD algorithm will
further degrade on parallel arc litccturcs  with a coarser grain size and/or  with a simpler
interconnection topology, This suggests that novel algorithms need to bc dcvclopcd  which,
while preserving the computational cfflcicncy  of the MD algorithm, ofi’cr a much simpler
cc)llllll~lllicatiol~  structure and hcncc  a much rcduccd  communication cost in parallel im-
plementation.

]n this paper wc arc conccrncd  with the solution of Poisson equation on the Intel
Touchstone Delta and Paragon (SCC also [12]). Delta and Paragon arc two rcprcscntativcs
of a class of emerging massively parallc]  MIMD architectures which also includes CRAY
T-3D.  These architectures employ a large number of powerful vector prc)ccssors  to achicvc
an impressive computational throughput. They allow the exploitation of concurrency
at two lCVCIS:  at a high lCVC1, coarse grain parallelism can bc cxploitccl in an MIMI)
fashion while, at low ICVC1,  the vector processing capability of the node processors can bc
used to further cnhancc  the speed of the computation. However, the main limitation of
these architectures is their simple communication structure, i.e. , simple mesh structure
for Delta and Paragon. Thus, these architectures arc most suitable for paral]cl  algorithms
which posses a high dcgrcc  of coarse grain parallelism with limited communicant ion and
synchronization rcquircmcnts,  and involve basic opcra,tion  (or algorithmic proccsscs)  tl~at
can bc cfflcicntly  vcctorizcd.

!l’hc dcvclopmcnt  of cfficicnt algorithm for solving Poisson equation on these MIh!lD
architectures is a rather challenging task. In fact, although with respect to the earlier
generation of MIMD architectures

&
such as H ypcrcubc  architectures used in [2,7]), the

coll~lllllllica.tioll  latency is notably rc uccd, noncthclcss  the grain size or the balance factor,
i .c., the ratio of communication time over the computation time, has been clrastically
incrcascd.  This is duc to the significant incrcasc in the computation power of the noclc
processors. Further, the performance of the noclc vector processors may vary by as mu cl]
as an order of magnitude, depending on the dcgrcc  to which the node computation can
bc vcctorizcd  (SCC !j4.1 .). This implies that the balance factor can also vary by an order
of ma.gnitudc.  As a result, the better the computation vcctorizcs  the greater the balance
factor will bccomc and hcncc  lCSS spccdup  will bc achievable unless the communication is
kept to a minimum and/or is overlapped with the computation.

In this paper, wc ncscnt  the implementation of a novel algorithm, designated as Fast
(Invariant Imbcdding  FII) algorithm [11], for solution of Poisson equation on this class of

massively para]lcl MIMD architectures. The FII algorithm achicvcs the same conlputa-
tional  efficiency of other FPSS while having a very simple coll~lllllllicatioll  structure and
highly vcctorizablc  basic operations. Our current illll~lc~~lc~ltatioxl,  though being prelimi-
nary, shows that a massive spccdup  of over two orders of magnitude can bc achicvcd  even
for moderate size problems.

The FH algorithm is originated from the Invariant Imbcdding  Algorithm of Angc] ancl
13clhnan [13]-[15 .

/
The Invariant Imbcdding  Algorithm was one the earliest method for

direct solution o Poisson equation. However, since the dcvclopnl@  of FI) Ss with a much
greater cfficicncy, lCSS attention has been paicl to this algorithm. We have dcvclopcd  [11] a
novel variant of this algorithm, the FH algorithm, which achicvcs the same computational
efficiency as the best FPSS, However, the main advantage of the FII algorithm over
other FPSS and particularly the MD algorithm is that it is significantly more cfficicnt for
vector ancl parallel computation. In fact, the simple communication and syl~cllrollizt~tic)]~
rcquircmcnts  of the FIJ algorithm allows its cfficicnt implementation on a variety of para]lcl
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architectures [11].

A clctailccl  description of the FII algorithm is prcscntcd  in [11]. In this paper, for the
sake of complctcncss  and space, wc only briefly discuss the algorithm for solution of 2D and
3D problems with Dirichlct boundary conditicm. This paper is organized as follows. The
original Invariant Imbcdcling Algorithm and the FII algorithm for 2D and 3D problems
arc prcscntcd  in $2 and ~3. In \4, the performance of the FII and MD algorithms on two
vector architccturcs,  CRAY  Y-MP and a single Intel i860 processor, is compared. Also,
the results of practical implementation of the FII algorithm on Delta and Paragon arc
prcscntcd.  Finally, some concluding remarks arc made in !5.

2. Fast Invariant Imbedding  Algorithm for 2D Poisson 13quatioll

2.1. 2D Poisson Equation

Wc consider the Dirichlet problcm for 2D Poisson equation in a unit square domain Q
with boundary dQ as

Vzu(x,  y) = j(z, y) (X, y)d-1 (2.1)

U(z, y) = g(x, y) (x, y)al

Superimposing a uniform mesh of size Ax = Ay = h = l/(N + 1) and using the five-point
fillitc-difi’crencc approximation, the problcm  is reduced to solution of a linear systcm

A4U = w (2.2)

for U where

~c!?~”~’  is a block tridiagonal matrix given by JI = Tridiag[–],  B, –1];

]C!J?N2XN’  is the identity matrix;

]]C~NXN  is a tridiagonal matrix given by 1] = qlidiag[–1,  4, -l],

U = COl{~i}C!J?~2, ~ = 1 to IV, and Ui = Col{Ui,j}CwN,  ~ == I to N, is the vector rcprcscnting
the approximate solution for U(Z, y);

W = COl{Wj}(!JlN2j’i  = 1 to N, and W i = Col{  Wi,j }C!RN, j = I to N, is the vector resulting from
the discrctization  of f(z,  y) and g(z, y).

Alternatively, wc present vectors of dimension JV2 by iV x N matrices. To this end, the
matrix rcprcscntation  of u and w arc denoted by U and W Where  u = {Ui,j } and w =
{wiJ}c@’x~, iandj=lto~.

2.2. ‘J’lle Invariant Imbedding  Algorithm

The Invariant Imbcdding  Algorithm [13]- [15] is based on the observation that the
solution of (2.2) is equivalent to that of a discrete two-point boundary-value problem:

‘U~-l + ilUi –  Ui+l  =  Wi i=lto N (2.3)

with spccificd  boundary values UO and UN+ 1. Note that, UO and UN+ I are given through
specification of boundary conditions in (2,1). A solution to (2,3) is then sought as

U ii ~ z AiU i + Ri (2.4)

where matrices Ai and vectors Ri are inclcpcndcnt of U i. From (2.3)-(2.4), it follows that

Ui =: (JJ – Ai)-lUi-l  + (IJ – Ai)-](Ri + Wi) (2.5)
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from which the recurrences for comput at ion c]f Ai and }ti are derived as

Ai-, E (1?  – Ai)-l (2.6)

Ri-l = (IJ - Ai)-](Ri + Wi) = Ai-l(lti  +- Wi) (2.7)

The initial conditions for (2.6) and (2.7) are obtained by considering (2,4) for i = N which
implies that AN = O and RN = UN+l. As shown in [13], from positive definiteness of IJ it
follows that the matrices (]] – A i) arc also positive definite and hcncc  nonsingular. The
computation of the Invariant Imhcdding  algorithm is performed as follows.

Step 1: Compute Ai-l from (2.6) for i = N to 1 with AN = O.

step 2: Compute Iti-l from (2.7) for i = N to 1 with RN = UN+I.

Step 3: Compute Ui+l from (2.4) for i = O to N -1 with UO given.

The computational complexity of Step 1 is of 0(N4)  while that of Steps 2 and 3 is
of 0(N3). This leads to an overall compkxit  y of 0(N4)  for the algorithm. ~Iowcvcr,  the
matrices Ai arc only function of problem’s size (i.e., N), the type of finite-diffcrcncc  schcmc
employed, and the type of boundary condition. Thus, for cases wherein a same problcm
is solved many times for different f(x, y) and/or g(z, y) these matrices can be prccomputcd.
With this prccomputation, the complexity of the algorithm is rcduccd  to 0(N3) which
indicates that the algorithm is still Icss c~lcicnt than the o(h’z~,og  N) FPSS.

2.3. A Fast Invariant Imbedding  Algorithm

The inefficiency of the Invariant Imbcdding  Algorithm results from the fact that it
requires the inversion of dense matrices (]J - Ai) and multiplication of dense matrices Ai
by some vectors. However, as shown below, matrices A; have fast cigcnvaluc-cigcnvccior
decomposition which allows the diagonalization  of (2.4), (2.6)-(2.7). This diagonzdization
results in an algorithm that not only it is competitive for sequential implementation but
also it is highly cfficicnt for parallel and vector comput at ion. The diagonalization  proccdurc
is based on the fact that matrices A i arc simult ancously cliagonalizablc,  i .c., they have
a same set of cigenvcctors  but different sets of cigenvalucs. This is cstablishccl  by the
following theorems.

Theorem 1. The Eigcnvzzluc-Eigcnvcctor  (E-E) decomposition of a symmetric tridiagonal
tocplitz  matrix S = ~idiag[b,  a, 6]&NxN  is given by

s = O)l,$o (2.8)

where  the matrix O = ,{Oi,j  }6@’x  N, i an d j = 1 to N, is the set of normalized eigcnvcctors  of S
with Oi,j = (*); sin *. The diagonal matrix AS = Diag{Asi}tYt N ‘N is the set of cigenvalucs
of 5’ with ~si = a + 26 cos * being the ith cigcnvaluc.

Jhwo~. Sec for example [16, p.349].

Note that, o is a symmetric orthonormal  matrix and hcncc  O = 0-l = 0~ where i denotes the
transpose.

Theorem 2. The E-E decomposition of matrix ~i is given by

A i = O~AiO (2.9)

where ~Ai = Diag{~Ai,j}C~Nx N, ~ = I to N, is given bcIow.
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Proof,  The proof follows by induction. First, from Theorem 1 the E-E decomposition of
]] is given by B = O~BO where

From (2.6) and for i = N, wc have

ApJ_~ = 11-1 = (oAno)-1 = 6A;%

‘l. NOW, kt  Ai+l = ~~Ai+]d. FrOlll (2.6) it follows thatwhich ilnplics that ~.4jV_ 1 = ~B

The set of cigenvalucs of matrices Ai arc then given by

~Ai = (~~] ‘- ~Ai+l)-l

for~=N–  ltoowith~AIV=  (). Q.E.D.

Substituting the E-E decomposition of Ai into (2.4) and (2.7), and defining

(2.10)

fii = OUi, fti = ORiY and Wi z OWi

the Fast invariant Imbcdding  (FH) algorithm is then given by

fii+l  = AAifii  -i- ki, i = O to N -1, With giVCn ~0 (2.12)

where AAi arc computed from (2,10). The cfRcicncy of the algorithm can bc further in-
crcascd by avoiding the explicit computation of UO and UN+ 1, 1.e., by avoiding explicit
transformation of i70 and UjV+ 1. To this end, wc rewrite (2.11) for i = N as

where W; = OW; and W; = UO -I WI.

I.ct us define a matrix ~ = Diag[O,  0,...,0, 0]c31N’XN2. From its definition, it follows that
@ is a synmctric  orthonormal  matrix and hcncc  @ = @ = ~-1. Tllc  computation of the
Fast Invariant Imbcdding  algorithm is pcrformccl as follows.

St!c]> 1: Coln]>utc ~A~ fronl (2.10).

Step 2:

1. Compute ~{ = UO+ Wl, W& = UN+ I + WN, and Set WI = Wi, ~= z to ~– 1.

20 Compute W = QW’,  or
fi~ = Ow; i=lto N

Step 3: Conlputc  fii_l  with kN_l  = AA N. ~ ~~ from

fi~-~ = ~A~-](fii + ~~) ~= N–ltol

(2<13)

(2.14)

5



Step 4: Compute (1~+1  with til = ~~o(fil + ~{) from

fi~+~  = ~A~6~  + hi i=ltoz  v-1 (2.15)

Step 5: Compute U = d, or

Ui  =  Ofii i= lto N (2.16)

The matrix o is the operator of ID Discrctc  Sine Transform (DST). Thus, by using fast
tcclmiqucs  [17], the matrix-vector multiplication in (2. 13) and (2. 16) can bc performed
in 0(NL09 N). This leads to a computational cost 0( N2Log  N) for Steps 2 and 5. The
computational cost of Steps 1, 3, and 4 is of 0(N2). Except for the computation of 14T{ and
FVfi,  the computations in Step 2 and in Step 5 arc exactly the same as the Steps 1 and 5
of the MD algorithm (SCC Appendix). It follows that the FII algorithm is asymptotically
as fast as the MD algorithm with the same cocf%cicnts  for N21,0g N-clepcndent  term. Note
that, similar to matrices ~i, the cliagon~ matrices ~Ai arc only function of problcm)s  size,
the type of finite-difference scheme and boundary conditions, and hcncc  for many practical
cases they can bc prccomputcd.

2.4. Numerical Properties of Fast Invariant Imbedding  Algorithm

Both the original and Fast Invariant Imbcclding algorithms have cxcellcnt  numerical
properties. Angel [14,15] has shown that the recurrence in (2.6) is stable in the sense that
an error introduced at any stage of the calculation C1OCS not cause larger errors in the
prcccding  stages and, asymptotically, it will bc rcduccd  to zero.  It then follows that the
recurrence in (2.10) is also stable since it is obtained from (2.6) through an orthogonal
transformation. Equation (2. 10) can be written as a set of N scalar first-order nonlinear
rccurrcnccs  as

~A~,j  = 1 ——
~tij –  ~Ai+-l,j

, i= N--l to Oandj=N  to 1, with AAN)j:CO (2.17)

which rcprcscnts  a set of Cont,inucd Iikctions  (CFS). The two vector rccurrcnccs  in (2.14)-
(2.15) can be written as two sets of N scalar First-Order Linear Recurrences (FOLRS):

Ri-l,j = ~Ai--l,j(Ri,j  -t w~,i), ~ = N -1 h 1 and j = 1 to N (2.18)

~ii-l,  j = ~Ai,j~i,j -t ki,j, ~ E 1 to  N – 1 and j = 1 to N (2.19)

Since ABj >2 for all j = 1 to N, it can bc then easily SllOWn that 1> AAi,J >0. This implies
that the two sets of recurrences in (2,18)- 2.19) arc stable in the sense that an error
introduced at any stage of the calculation iocs not cause larger errors in the prcccdi ng
stages and, asymptotically, it will bc reduced to zero.

3. Fast Invariant Imbedding  Algorithm for 3D Poisson Equation

3.1. 3D Poisson Equation

For the 3D problcm,  wc consider Poisson equation on a unit cube clomain Q with
boundary OQ as

V%(2, y, z) = F(X, y, z) (x, y, .z)ca (3.1)

tI(iz, y, z) = G(x, y,z) (z, y, Z)ctm

Superimposing a uniform grid of size Ax = AY = AZ= 1/(N + 1) and using the seven-point
finite-diffcrcncc a~>l>roxill~atioll,  the problem is rcduccd  to the solution of

Mu == w (3.2)
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for /1 Where

A4@’’x~S is a block tridiagonal matrix given by M = Tridiag[–~, C, –1];

Z is the N2 x N2 identity matrix;

C#’2X~2 is a block tridiagonal matrix given by c = Tkidiag[-1, D, –1];

~)c?l~x~ is a tridiagonal  matrix given by 1}= Tridiag[– 1,6, –]];

// = COl{lJi}fR~’ with Ui = Col{Ui,j}C~~2  and Ui,j = Col{Ui,j)~}~W”,  i, ~ and ~ = I to N, is the
vector representing the approxm~atc  solution for U(Z, y, z);

w = Col{~i}CWS  with ~i = Col{~i,j }tYP” and {~i,j} = {~i,j,~}~@”,  ~, j’ and k = 1 to N, is
the vector resulting from the discretization c)f F(Z, y, z) and G(x, V, z).

3.2. Invariant Imbedding  Algorithm

For the 3D case, wc seek the solution to “a discrctc  t we-point bounda,ry-value problcm
given by

‘Ui.l +- CUi  –  Ui+~  =  Wi (3.3)

with given boundary values UO and UN+l. Using a procedure similar to that in s2,2, the
Invariant Imbcdding  algorithm is given by

Ai-l =( C–Ai)-l, i=N to 1, with AN =0 (3.4)

]~i-1 = Ai_l(l/i -t wi), i ~ N tO ], With }tN = UN+] (3.5)

Ui+.l = AiU i + Iti, i = O to N -1, with UO given (3.6)

The computational cost of (3.4) is of O(NG) ancl that of 3.8) and (3.9) is of 0(N4). Thcrcforc,
kfor 3D problems, the algorithm is significantly less c lcicnt than the FPSS with the cost

of 0( N3J. og N). If the matrices Ai can bc prccomputcd  then the computational complcxit  y
of the algorithm is rcduccd  to 0(N4). However, even with this reduction, the algorithm is
still lCSS cfflcicnt than other FPSS.

3.3. Fast Invariant Imbedding  Algorithm

Similar to the 2D case, the derivation of FH algorithm is based on the diagonalization
of (3,4)-(3,6) by using the E-E decomposition of matrices Ai. To this end, first consider a
pcrmut ation matrix I’c!W” ‘N’ that arises in 211 Discrete Fourier Transform (DFT).  If two
vectors x and Y of dimension N2 are defined as x = Col{Xi,j}  and Y = Col{~~,i},  i and
j = ] to N then X = 1’Y implies that Xi)j = >~,i.  Or, using the matrix rcprcscnt atlon Of X
and Y, wc have

x=py~x=y~

That is, P is the operator for matrix transposition. We also have p-’ = F’t,  since 1’ is a
permutation matrix and hence it is orthogonal, and P = Pt = P-1, since ]’ is symmetric.
The E-E decomposition of matrices Ai is derived based on the following theorem.

‘1’heorem 3. The E-E decomposition of matrix C is given by

C = QAcQ (3.7)

where Q = 01’0 is a symmetric orthonormal  matrix (hcncc,  Q = Q~ = Q-1) and Ac =
Diag{~ci,j}&N’xN’, i and j = ] to N, is given below.
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Pnmf. From Theorem 1, the E-1? decomposition of D is given by D = O~nO where

i7r
~1) = Diag{~~i}@x~, i=l toN,  and~~i=~-2COs-—N+-1

Using the E-E decomposition of D, the matrix C can bc expressed as

where A is a block tridiagonzd  matrix given by A = Tridiag[-  I, ~J~, –1]. The block clcmcnts
of A arc diagonal and hence it can bc rcducc  to a block diagonal matrix as

A = PPA PP = P(PAP)P = PTP (3.9)

. .
WhC~C T = Dlag{Y;  } and T i = Trldlag[-1,  ~l)i, – 1], From Theorcm  1 and the definition of
matrix (3, it follows that

~~ = ~~Ti~ and ~’= ~~~~ (3.10)

where AT = Diag{~~i}&’’’x~2,  i = 1 to N, hi = Diag{bi,j}CJ~~x~,  ~ = I to N> and

Dcfhing  ~c = ~~’, the E-E decomposition of matrix c, given by (3.7),  is thcn obtaincd  bY
replacing (3.10) and (3.9) into (3.8). Q.E.D.

tilcll S11OWII  lJmt

(3.11)

]mbcdding  algo-

From (3.4) and for i = N, wc have A~-l = C - l  =  (QAcQ)-’  = QA;lQ which imdics
that ~AN_l  = ~fil. Using a proccdurc  similar to that in !2.3., it can bc
A i = Q~AiQ where ~Ai = Diag{~Ai,j,k}C$~N’xN2, for ~ and ~ = 1 ‘0 ‘> and

Defining fii = QUi, hi = QRi, and @i = Q~i,  the fast variant of Invariant
rithm is given by

fti-] ~ ~Ai-](fii + ~i)

~i+l = ~Aifii + fi~

Again, as in 52.3, it is more cfficicllt  to avoid explicit comI~ut~tio~l  Of ~o aIICl ~~+1: DcfiniW
a symmetric orthononnal  matrix Q = Diag[Q,  Q,..., Q, Q]c$ll~ ‘~ , the computa,tlon  of the
Fast Invariant Imbcdding  algorithm for 3D problem is then performed as follows.

s~ep 1: (hmpuk  ~Ai from (3.11).

StC]) 2:

2. Compute W = Q~’, or
W; = QW; i=lto N

Step 3: Compute  ii-l with fiN-l = ~AN-l  ~fi from

(3.12)

(3.13)

(3.14)
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Step 5: Compute u = 422i, or

fi~ = Qti~ i=lto N (3.15)

As can be seen, the computation for 31> case is performed in a similar fashion as for
2D case, with the cxccption  that the matrices and vectors involved arc now of dimension
N2 x N2 and N2, respectively. The cost of Steps 1, 3, and 4 is of 0(iV3).  The matrix Q is the
operator of 2D DST. Thus, by using fast techniques [17], the matrix-vector multiplication
in (3.12) and (3.15) can bc performed in 0( N2Log  N), leading tc) a cost of 0( N31.0g  N) for
Steps 2 and 5. Again, except for the computation of FVi and wfi, the computations in Steps
2 and 5 are exactly the same as in the Steps 1 and 5 of the MD algorithm (SCC Appendix).
Hcncc, the FII algorithm is asymptotically as fast as the MD algorithm with the same
cocf%cicnts  for N31,0g  N-dcpcndcnt  terms,

4. Performance of FII Algorithm on Vector and Parallel Architectures

A detailed theoretical analysis and comparison of the performance of the FII and MD
algorithms in terms of their computation and communication complexity when impl.c-
mcntcd  on parallel architectures with various interconnection topologies is prcscntcd  in
[11]. It is also shown that both algorithms achicvc the smnc bounds on computation time
and number of processors, i.e., time of O(l,og  N) with 0(N2) processors, for 211 problcm  and
with 0(N3)  processors, for 3D problcm.  Here, wc first present and compare the performance
of FII and MD algorithms on vector architectures. Wc then present the performance of the
F?] algorithm for 3D problcm  on two massively parallel coarse grain parallel architcctmws.
In the following a coarse grain parallel il~~~>lcl~lclltatioll is defined as the onc in which each
processor computes several (or at least one) vectors U~,

]n the following, it is assumed that, as for most practical cases, the problcm  is solved
many times with the same size, same type of finite-difference schcmc and boundary con-
ditions but for different values of g(z, y)/G(z,  y, z) and f(z, y)/J’(x,  y, z). In this case, for F’H
algorithm and both for 2D and 3D problems the diagonal nmtriccs ~Ai can bc prccom-
putcd, Similarly, for the MD algorithm the factorization of matrices ~; and ~~,j  (Step 3 in
Appendix) needs to performed once as part of prccomputation.  Note that, for 2D prob-
lcm as shown in (2.17), the computation of ~Ai can bc rcduccd  to that of a set of CFS,
By using the algorithm in [18],  the set of CFS can bc computed in O(J.o~  N) with 0(N2)
processors and in O(NJ,og N) with O(N) processors. It should be mentioned that, as shown
in [1 I], by using the analytical solution for ~A~, the same computation time with the same
number of processors can bc achlcvcd  in a fully dccouplcd  fashion, that is, without any
ccmmmn  i cat ion among processors. Similar results can also bc achicvcd for 3D problems.

In comparing the performance of the two algorithms on vector and coarse grain parallel
archi tccturcs,  note that, as emphasized before, the computations in Steps 2 and 5 of the
FH arc the same as those in Steps 1 and 5 of the MD algorithm. In a coarse grain
parallel implementation with O(N) processors, these computations can be performed ill a
fully decoupled fashion, leading to a perfect linear spccdup. For vector illl~>lclnclltatiol~,
optimal vcctorizcd  subroutines can bc used for performing 2D and 3D DSTS [1]. Thcrcforc,
for illl~>lclnclltatioll  on vector and coarse grain parallel architccturcs,  the pcrfornmncc  of
the two algorithms is a function of the structure of rest of the computation, i.e., Steps
3 and 4 for FII algorithms and Steps 2, 3, ancl 4 for MD algorithm. Rricfly,  the greater
cfllcicncy  of the FII algorithm over the MD algorithm results from two factors:

a. The computation of Step 3 of the MD algorithm involves the solution of a set of
tridiagonal  systems whereas Steps 3 and 4 of the FII algorithm require the solution of
vector FOLRS.
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b. The operation in Steps 2 and 4 of the MD algorithm corresponds to matrix transposi-
tion -which requires a global data cxchangc  among processors in parallel inlplcnmnta-
tion -whereas the computation in Steps 3 ancl 4 of the FII algorithm has a very simple
structure: It dots not require any data movement for vector implementation and it
leads to a much lCSS communication overhead for parallel illll]lclllclltatioll.

Whi]c  both factors lead to a better performance of the FII algorithm on vector ar-
chitccturcs,  the second factor, as further cliscusscd below, significantly contributes to its
excellent performance on parallel architectures.

4.1. Comparison of FII and MD Algorithms on Vector Architectures

Figures 1.a and 1,b show the performance of the FH and MD algorithms on the CRAY
Y-MP2E/232.  Although this is a vector architecture with two processors, our implemen-
tation uses only one processor. The processor has a 611s (166 Mhz)  clock and a peak
computation power of 330 MFLOPS. The memory is arranged in 256-Word(W)- with 64-
bit W- banks with a total of 32 MW. The memory is based on the ECL technology with an
access time of 1511s, ‘I’he Fortran  compiler used in our implementation is the cft 77 version
5.0. Note that, our current illll>lclllclltatiol~ uses automatic vcctorization  performed by t hc
compiler,

Both for 2D and 3D problems, the FII algorithm achieves a slightly better performance
over the MD algorithm, with the performance for the 2D problem better than that for
3D problem. This better pcrfornmnce  is duc to the fact that the solution of tridiagcmal
systems in Step 3 of MD algorithm is rather scqucntia,l  and does not vcctorizc  WC1l  while
the computations in Steps 3 and 4 of the FII algorithm arc highly cfflcicnt for vector
ccunput  at ion. ]n particular, the computation in Step 4 rcprcscnts a triad operation with
optimal cfflcicncy  for vector computation. Further, the matrix transpose operation in Stc;ps
2 ancl 4 of the MD algorithm requires global clata movement (which is also costly on t,hc
vector architectures) while the computation of Steps 3 and 4 of the FII algorithm can bc
performed with a minimum of data movement and a maximum utilization of fast vector
registers. Note, however, that for both 2D ancl 3D problems the computation of the two
algorithms is dominated by the cost of DS’I’S. We have not yet implcmcntccl a vcctorizcd
routine for performing DSTS. Clearly, with a more optimal illlI]lc~~lclltatio~l  of DSTS the
pcrforn-mncc  of the FII algorithms over the MD algorithm would also improve.

Note that, it is possible to further vcctorizc  the computation of both algorithms. This
can bc achieved by using a Do Across Lc)op tcchniquc  while performing multiple DSTS
[1]. Similar technique can also be used for further vcctorization  of the solution of multiple
tridiagonal  systems in Step 3 of the MD algorithm. However, this tcchniquc  involves
the operations on vectors with non unit stride which can lead to a greater cost of data
movement particularly on architectures with more limited fast memory.

Figures 2.a and 2,b show the performance of the FII and MD algorithm on a single
node of Intel Touchstone Delta, Each node of Delta is an Intel i860 vector processor with
pipeline floating-point adder and multiplier. The 2860 is a 40 MHz processor with a peak
power of 80 Mflops and a sust aincd power of 60 Mflops for fully vcctorizcd  comput  at ion,
i ,c., vector-dot operation. It is a cache-oriented vector processor with a 2 I(W on-chip
cache and 3 MW (32-bit word) user accessible local memory.

The size of problcm in our illll>lclncl~tatiol~  on a single i860 has been constrained by the
limited size of node memory. But, as can bc seen from Figs. 2a and 2b, on the i860 and
compared with the ilnl>lelllcl-ltatio~l  on the CRAY Y-MP,  the FII algorithm achieves even
a relatively bet tcr performance over the MD algorithm. This is due to the slower speed of
the main memory of the i860 which results in a greater cost of data movel-ncnt.  Note that,
the relative performance of the FH algorithm improves with the size of problem.
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It seems that lCSS attention has been paid to the vector architecture of the i860. Our
practical implementation has shown that for strictly sequential computation with nonuni-
form data structure the i860 delivers a sustained computation rate of about 6 Mfiops and
even ICSS. While for the vector operation in Step 4 of the FII algorithm we have achicvcd
a sustained rate of more than 50 Mflops. As stated in fl, this implies that the balance
factor can vary by an order of magnitude. As a result, efflcicnt  parallclization  of the comp-
utations  in Steps 3 and 4 of the FII algorithm is even more challenging since for these
computations the balance factor has its highest value (see also below),

4.2. Comparison of I!’11 and MD Algorithms on Parallel Architectures

Now consider a coarse grain parallel implementation on MIMD architectures with p
processors where P < N. For the sake of simplicity Ict us assume that N is divisible by
p. In such an implementation each processor computes onc or fcw vcctc)rs U~. For our
technical discussion, let us consider a parallel implementation by using N processors. In
the followi]lg, f, a, and B denote the time (cost) of onc floating-point operation, the
communication start-up or latency, and the clcmcntal  data transfix, respectively.

For 2D problcm,  a parallel iln~>lcl~lclltatiol~  of the MD algorithm with N processors
results in a perfect linear spccdup  of N in the computation. This fully parallel structure
of the MD algorithm was very early recognized and discussed by Buzbce  [10]. Neglecting
the lower degree terms, the computation cost of the parallel MD algorithm is given by

7>MD = (KI NJ.og  N)j (4.1)

for some constant 1<1 (]<1 <5 [17]). However, if the communication cost is also taken into
account then the spccdup  will significantly degrade.

The communication complexity of the matrix transposition operation in Step 2 and
4 of Ml) algorithm is a function of processors interconnection topology. On a parallel
architecture with N processors and with H ypcrcubc  or Shuffic-Exchange topology [19,20],
the cost of this operation is given by

C2MD = (CX + O) NI.09 N (4.2)

A comparison of (4.1) and (4,2) shows that, even on fine grain architectures with a of the
same order as f, the communication cost of the MD algorithm can bc nm.ch greater than
its computation cost. It also indicates that, as shown in [2], for 2D problcm  only a very
limited number of processors can bc ef%cicntly used.

For 3D problcm  and with a similar reasoning, it can be shown [11] that the parallel
implementation of the MD algorithm results in computation and communication costs of

7bMD = (K] N2Log N)j (4.3)

CSM])  = (CX + N/3) NJ,og N (4.4)

Equations (4.3) and (4.4) represent a much improved ratio of computation cost over com-
]nunication cost. However, on medium and coarse grain architectures for which a can be
much greater than j even by several orders of magnitude (which is the case for Delta and
Paragon) and even for large problem sizes (i.e., large N) the communication cost of the
MD algorithm is a limiting factor in achieving a massive spccdup  in the computation.

Now let us consider a similar parallel implementation of the FH a~gorithnl  for 2D
problcm.  With N processors, the computation of Steps 2 and 5 can be performed in a fully
CICCOU icd fashion with a cost of l{lNl,og N, By using the Recursive Doubling Algorithm
(RDA\ [21], the vector FOLRS in Steps 3 and 4 can bc computed with a cost of K2N1,09 N
where ]<2 = 6. The computation cost of the parallel FII algorithm is then given by

~~r,, = (K3Nl,og  N)f (4.5)
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where ]fs is greater than ]<1 by almost a factor of 2. Thus, asymptotically, the computation
cost of parallel FII algorithm is almost twice that of parallel MD algorithm.

With a ShufHe-Exchange  topology and for some cases with a Hypcrcubc  topology (SCC
[22]), the communication cost of the RDA and hcncc  that of parallel FII is given by

C2FII = (a+ N8)Log  N (4.6)

For 2D problems and for typical values of N on the order of hundreds, a comparison of
(4.1 )-(4.2) and (4.5)-(4.6) shows that, although the computation cost of the FH algorithm
is greater than that of MD algorithm by almost  a factor of 2, its communication cost is
lCSS than that of MD algorithm by more than two orders of magnitude.

With a similar reasoning, it can be shown [11] that the computation and communication
costs of the FII algorithm for 3D problems arc given by

l~F1l == (K3N21,0g  N)j (4.7)

C3F11 = (~+- N2@I.0g N (4.8)

Again, a comparison of (4.4) and (4.8) shows that the communication cast of the FII
algorithm is significantly ICSS than that of the MD algorithm. Also, (4.7) and (4.8) indicate
a much greater ratio of comput ation cost over communicant ion cost for parallel FII algorithm
compared to that of parallel MD algorithm given by (4.3) and (4.4).

It should be mentioned that faster al .orithms for performing matrix transposition
fon Hypcrcubc  have been proposed, c.g,, 23,24]. However, these algorithms arc based

on the assumption of additional hardware complexity, i .c., the capability of simult ancous
data transfer from one processor to many other processors [23], or additional software
complexity [24].

The above discussion was based on the implementation of both FII and MD algorithms
on parallel architect urcs with rather  more complex topologies, i .c., ShufHc-Exchange or
Hypcrcube.  However, the simple communication structure of the FII algorithm allows
its cfflcicnt implement at ion on a varict  y of parallel archit cct ures with much simpler inter-
connect ion topologies. For example, as discussed in [11], on a linear array of fine grain
processors, e.g., an array of N DSP chips, it is possible to achicvc a spccdup  of O(N) with
a col~~lllllllicatioll  complexity of 0(1 ) both for 2D and 3D problems. This iln~]lclllclltatioll
uscs a pipeline technique for computation of vector FOLRS in Steps 3 and 4 of the FH
algorithm. By dividing these vector FOLRS  into a set of scalar FOLRS and by overlapping
the computation and the communication, it is then possible to achieve a communication
complexity of 0(1). Obviously, the implcmcntat  ion of the MD algorithm on such a lin-
ear array would result in a significant communication cost, In the next section a similar
pipeline technique for implementation of the FII on Delta and Paragon is discussed.

4.3. Performance of FII Algorithm on Coarse Grain MIMII Architectures

In this section, wc present the results of ix~l~>lclllcl]tatio~l of the FII on the Intel Delta
and Paragon systems inst allcd at Caltech Concurrent Supcrcomputing  Facilities [12]. Dclt a
and Paragon are distributed-memory message-passing MIMD architecture with a mesh
topology and 512 computing nodes organized in a 16x 32 2D array. Delta uscs onc 40 MHz
i860 as node processor and, due to the lack of a dcdicatcd  processor for performing the
communication, dots not offer the capability c)f overlapping the computation and conmm-
nication. Each computing node of the rcccntl y upgraded Paragon uses two 50 MHz i860
processors: one for computation, and onc for communicant ion. Thus, it offers the capability
of overlapping the computation and communication. Although, the spcccl  of the conlput-
ing node in Paragon is increased by 7020, due to the use of a dedicated communication
processor, the communication latency is rccluccd by a factor 2, resulting in a better balance
factor for Paragon,
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Despite the minimum communication complexity of the FII algorithm, its computation
for 2D problcm  cannot efficiently be implcmcntcd  on Delta and Paragon since it is too fine
grain a computation. Furthermore, the only communication in parallel implementation of
the FII algorithm occurs in computation of Steps 3 and 4 for which, as stated before, the
balance factor has its highest value. However, for 3D problem, the computation of the FII
algorithm can bc efficiently parallclizcd. In our current implementation for 3D problcm,
both Delta and Paragon arc used as a linear array of 512 processors with a limited nearest
neighbor communication. Note that, theoretically, it is possible to implement the com-
munication structure of the RDA on both Delta and Paragon since non nearest neighbor
communication can bc performed with a small additional cost for hopping. However, in
practice, this will lead to a large ovcrhcmd  duc to the network congestion.

Our current implementation uscs a pipeline technique for cficicnt  computation of Steps
3 and 4. This technique is further motivated by the fact that the computation of Steps
3 and 4 for 3D problem involves operations on large vectors of dimension N2. Given the
limited size of the i860 cache (2 K), an efficient technique is then to divide the vectors
into segments and perform the vector operation on the segments. This also allows the
overlapping of the computation with the communication, i .c., t hc computation of the
segment i+ 1 can be overlapped with the communication of the results of the computation
of segment i. In order to prcciscly  dctcrminc  the optimaj size of segments, wc have run
the computation with various segment sizes. Wc fcmnd  that 600 is optima] size for Delta
while for Paragon this number is 300. Clearly, the cfflcicncy  of this pipeline tcchniquc  is
a function of the ratio of the number of segments over the number of processors. That is,
with a given number of processors, a larger number of segments results in a better spccdup.

Figures 3-5 show the results of the iln~~lcll~clltatioll  of the FH algorithm on Delta and
Paragon for various problem sizes. The spccdup  is measured as the ratio of the computation
time of the algorithm on a single i860 over computation time of parallel illll>lclnclltatioll.
Due to the limited node memory, it is not possible to directly nmasurc the single i860
computation time for Iargc problcm sizes. However, the recursive and local nature of the
computation in FII algorithm allows an exact mcasurcmcnt to be performed. To this end,
the computation in (3.12)-(3.15) arc performed exactly but memory limitation is avoided
by overwriting the data. In other words, the same amount of computation is performed
without generating the same amount of data, Note that, this represents an optimistic
computation time on a single i860 since it dots not include the overhead duc to the data
movement .

As can bc seen, for a same problcm size and with a same number of processors, the
results on Paragon show significant improvement over those on Delta. This is duc to the
better balance factor of Paragon which allows a smaller segment size ancl hcncc  a lart;cr
rat io of the number of segments over the number of processors. It should bc emphasized
that wc have not yet implcmcntcd  the asynchronous communication on Paragon which
allows the computation to bc overlapped with the communication and hcncc  can lead to
an even bet t cr pcrfornmncc.

5. Discussion and Conclusion

We have prcscntecl  the results of implementation of the FII algorithm for solution of
Poisson equation on vector and massively parallel MIMD  architectures. our results show
that the parallel FII algorithm achicvcs a spccdup  of over two orders of magnitude even for
moderate size problems. For a 512 x 511 x 51 I problem, a spccdup  of 340 has been achicvcd
by using 5] 2 processors. The parallel FII also achieves an optimal overall computation
time by a further exploitation of vector processing capability of node processors.

As stated before, our implementation is rather preliminary and wc arc currently work-
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ing to further improve the performance of parallel FII algorithm. Specifically, the key to
improve the performance is a better parallel i]ll~>lcll~cl~tatioll  of the vector FOLRS in Steps
3 and 4 of the algorithm. Also, our implementation considers Delta and Paragon as linear
arrays and dots not use the mesh structure and fast non nearest neighbor c.ollll~l~ll~icatioll.
On mesh-connected architccturcs,  a FORL can bc solved in O(N ~ ) [25]. However, even for
moderate size problems, this would Icad to a poor spccdup.  A more promising tcchniquc
that wc are currently implementing is a hybrid RDA/pipeline tcchniquc.  Recall that the
kcy issue in cfficicnt implementation of the pipeline technique is to increase the ratio of
the number of segments over number of processors. Also, recall that a full implementation
of the RDA is inefficient since it leads to network congestion. A hybrid RDA/pipeline
tcchniquc  can bc employed as follows. First, the R.DA is used to generate only partial
results. This uses non nearest neighbor communication but without network congestion.
The pipeline technique is then used to compute full solution but, now, for the same number
of segments the number of processors is reduced.

We believe that the FII algorithm can bc even more efficiently implemented on other
architecture with a smaller balance factor and/or better topology. An example is a net-
work of ‘lhnsputcr  which, usually, has a greater /? but much slower processors. Also, as
suggested by (4.8), the implementation of the FII algorithm on architectures with ShufHe-
Exchange or Hypercubc  topology results in a minimum communication cost and hence
optimal performance.
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Appendix: Matrix Decomposition Algorithm

Using our notation in \2 and \3, the MD algorithm for 2D and 3D problems is given below.

A. 213 Poisson Equation

The computation of the MD algorithm for 2D problcm is performed as follows.

Step 1:

Step 2:

step 3:

step 4:

Step 5:

Compute @ = OW or ~i = 01’Vi for i = 1 tO h’.

Form vector ~ = PW, i.e., set @i,j = Wj,i for i and ~ = 1 to N.

SOIVC  tridiagonal  systems si~i = Wi, i = ] to N where Si = Tridiag[–1,  ~Di} –l].

Form vector ~ = PU, i.e., set ~i,j = Ujli  for i and ~ = 1 to N.

COlllpUtC  U = @ti or Ui = Otii for i = 1 tO N.

El. 3D Poisson Equation

In order to dcscribc the MD algorithm for 3D problcm,  let us first consider a pcrnlu-
tation matrix Pall?“X

N’ that arises in 3D DFT. Note that, unlike P, the matrix P is not
symmetric. But, p-] = @ since ~ is a pcrmut ation matrix and hcncc  it is orthogonal. The
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computation of the MD algorithm for 3D problem is then performed as follows.

Step 1: Compute W = QYV, Or Wi = QIYi for r’= ] to N.

Step 2: Form vector W = Pfi, i.e., set l&i,j,~  = ~k,i,j,  for i, j, and k = 1 h N.

Step 3: Solve the Set of tridiagonal systems ~~jui,j = Wi,j,  i and ~ = ] to N where  Si,j  =
Tridiag[–]  , ACi,j} –1].

Step 4: Form vector 17 = PtZ~, i.e., set fii,j,~  = uj,~,i,  for i, j, and k = I to N,

Step 5: C!omputc  14 = Q~, or Wi = Qfii for i = 1 to N.

Note that, the matrix P is also the operator for matrix transposition for non square
matrices.
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Figure 4: Performance of 3D Parallel Fast Invariant Imbedding Algorithm
on the Intel Delta and Paragon

(a): Implementation on Delta (b): Implementation on Paragon



250

200

150

100

50

0

350

300

250

200

150

100

50

1 2 4 8 16 32 64 128 256 512

Number of Processors

(a)

[:._ . . . .._.._’----–m -51 2*255*255
--A-- 512’255’511.—1

.——. ——-. ——. . ..— —. . ..— -.—

‘-””+
.- ---A

~-; --”51 2*255*255
-A 512’255’511
-e 512’511”511

––---–+-–--–--+  –- ------+---—  -- --+– -- -- i ---- ---+  -- --+ ---- --–i--- Io
1 2 4 8 16 32 64 128 256 512

Number of Processors

(b)
Figure 5: Performance of 3D Parallel Fast Invariant Imbedding Algorithm

on the Intel Delta and Paragon

(a): Implementation on Delta (b): Implementation on Paragon


